Assessing the Predictability of High-Impact Events and Why There is Limited Use of Ensembles in NWS Operations

Dr. Brian A. Colle
Stony Brook University - SUNY
This work highlights a CSTAR project (2010-2013): Predictability of High Impact Weather during the Cool Season over the Eastern U.S

Brian A. Colle and Edmund Chang

Stony Brook University - SUNY

HPC – David Novak et al.
EMC – Yuejian Zhu, Yan Luo, Jun Du, and Jordan Alpert
OPC – Joseph Sienkiewicz et al.
WFO-OKX: Jeff Tongue et al.
WFO-PHI: Al Cope et al.
WFO-CTP: Richard Grumm et al.
WFO-PIT: Josh Korotky et al.

http://dendrite.somas.stonybrook.edu/CSTAR/cstar.html
CSTAR Scientific Motivation

* Improve the understanding of high impact weather predictability during the cool season through objective verification of cyclones and Rossby wave packets (RWPs) in ensembles.

* Better understanding of RWPs in relation to extreme weather.

* Better understanding of the predictability of some mesoscale phenomena (e.g., snowbands).

* Better ensemble tools and post-processing.

From THORPEX International Science Plan (Shapiro and Thorpe, 2004)
Talk Outline

1. Some current ensemble tools/programs used in the NWS forecast offices.

2. Some issues using ensembles in operations: Survey results

3. New tools Part 1: Rossby wave packets

4. New tools Part 2: Real-time ensemble sensitivity analysis
The operational community has made significant progress in ensemble modeling and products during the last decade.
Some progress displaying ensemble data in the forecast office for CSTAR.

Advanced Linux Prototype System (ALPS)
http://dendrite.somas.stonybrook.edu/CSTAR/ALPS.html
Ensemble SREF data into BUFKIT (New York, NY WFO)
What are some of the current challenges in using ensembles in operations?

* Ensemble underdispersion (lack of calibration) and biases limit ensemble skill.
* Ensembles have not been comprehensively verified, especially for high impact weather.
* Forecasters lack tools to understand the origin of ensemble spread and errors in realtime.
* Forecasters have few ways to communicate uncertainty in their public forecast products.

Survey: To rank these potential issues of using ensembles in operations:

Survey Questions:

1. What is your current position? (operational forecaster, manager/admin, researcher, and model developer)

2. How often do you use ensembles?

3. Why are ensembles not used in operations as much as they could be? Weight each issue from “not a problem” (= 1) to “one of the largest problems” (= 5)

4. Rank the 8 provided issues from the largest problem to the smallest issue/problem.

5. Open Ended Question: Other written comments regarding the difficulty in using ensembles in operations.
Ensemble Issues To Rate/Weight

* Data Access. Not enough ensemble data is making it into the forecast office.
* There is limited time to view and interpret ensembles.
* Most clients and/or NWS grids do not require enough probabilistic information.
* Ensemble means/probabilities have relatively large errors and are uncalibrated.
* Ensemble resolution is too coarse.
* Not enough probabilistic verification has been done.
* Lack of training in ensembles.
* Lack of graphics/tools to interpret ensemble predictions.
Survey open from 9 November 2011 to 15 December 2011. Sent to all NWS SOOs (many forwarded to other forecasters), managers, and model developers within the NWS, as well as 15-20 faculty/students at universities doing ensemble research.

* The results in the following slides are separated into the following sections. Number of responses are in the ()
1. All responses (166)
2. Operational NWS Forecasters (111)
3. NWS Admin / Managers (37)
4. Researchers and Model Developers (18)
5. NWS Forecasters who sometimes or never use ensembles (50)
6. NWS Forecasters who use ensembles often or always (61)

For the full survey results, please check out:
http://dendrite.somas.stonybrook.edu/CSTAR/Surveys.html
Operational Forecaster Results
How often do you use ensembles?
Why Ensembles not used in operations? (average response)
(1=Not a problem, 2 = Minor, 3= Moderate, 4 = Major, 5= One of Biggest)

- Data access. Not enough ensemble data is making into the forecast off
- There is no time to view and interpret ensembles during an operation...
- Most clients and/or the NWS grids do not require probabilistic inform...
- Ensemble means/probabilities have relatively large errors and they ar...
- Ensemble resolution is too coarse to be useful for most sensible weat...
- Not enough probabilistic verification has been done to demonstrate th...
- Lack of operational training in ensembles.
- Lack of graphics/tools to display and understand ensemble predictions...
Why Ensembles not used in operations as much as they could be? (Number of responses: No problem, Minor, Moderate, Major, Biggest)

- Data access. Not enough ensemble data is making into the forecast off.
- There is no time to view and interpret ensembles during an operation.
- Most clients and/or the NWS grids do not require probabilistic information.
- Ensemble means/probabilities have relatively large errors and they are.
- Ensemble resolution is too coarse to be useful for most sensible weather.
- Not enough probabilistic verification has been done to demonstrate this.
- Lack of operational training in ensembles.
- Lack of graphics/tools to display and understand ensemble predictions.
Forecasters who only sometimes use ensembles
(Number of responses: No problem, Minor, Moderate, Major, Biggest)
Manager/Admin Results Only
Why Ensembles not used in operations as much as they could be?
(Number of responses: No problem, Minor, Moderate, Major, Biggest)

- Data access. Not enough ensemble data is making into the forecast off...
- There is no time to view and interpret ensembles during an operations...
- Most clients and/or the NWS grids do not require probabilistic inform...
- Ensemble means/probabilities have relatively large errors and they ar...
- Ensemble resolution is too coarse to be useful for most sensible weather...
- Not enough probabilistic verification has been done to demonstrate th...
- Lack of operational training in ensembles.
- Lack of graphics/tools to display and understand ensemble predictions.

Smallest Issue
Researcher / Model Developer
Why Ensembles not used in operations as much as they could be? (1=Not a problem, 2 = Minor, 3= Moderate, 4 = Major, 5= One of Biggest)

- Lack of graphics/tools to display and understand ensemble predictions...
- Lack of operational training in ensembles.
- Not enough probabilistic verification has been done to demonstrate the importance of ensembles.
- Ensemble resolution is too coarse to be useful for most sensible weather applications.
- Ensemble means/probabilities have relatively large errors and they are not always interpreted.
- Most clients and/or the NWS grids do not require probabilistic information.
- There is no time to view and interpret ensembles during an operation.
- Data access. Not enough ensemble data is making into the forecast off.
Survey Summary

* Nearly all forecasters use ensembles; however, only ~45% use them “sometimes.”
* The highest ranked issues are (1) the lack of tool/graphics, (2) ensemble data access, and (3) ensemble training.
* For forecasters who “sometimes use ensembles,” it appears that the time to view/interpret ensembles is also an issue (ranked #3). Some of this may be from the lack of tools and data access as suggested by their open ended questions.
* Managers/admin view the time to interpret ensembles as the smallest problem on average (rank #8).
* Most or all researchers and model developers believe that the lack of tool/graphics is the largest issue.
Need more ensemble tools to better engage forecasters with ensembles and understand predictability issues in realtime.
Stony Brook Wave Packet Diagnostics for Winter TPARC

http://xs1.somas.stonybrook.edu/~chang/personal/Wave/main.htm
Stony Brook Univ. – NCEP-HPC collaboration: Real-time Wave Packets in Operations

Courtesy: Mike Bodner at HPC
Ensemble (GEFS) Wave Packets

http://wavy.somas.stonybrook.edu/wavepackets/home.html

Model Initialized: 2012020700 Valid h+120

300 hPa
Wave Packet Amplitude
(WPA in m/s) and spread
(shaded)

300 hPa
heights and spread
(shaded in dm)

Mean WPA And Prob
(*100) of WPA > 15 m/s
Have Developed An Automated Wave Packet Program to Determine Climatology and Verify

1998, 1, 3, 12 UTC

WPI Shaded, WPA in Brown Contours (15, 25, 35 m s\(^{-1}\)), 300 hPa Height contoured in black (every 24 dam). From Matt Souders: CSTAR grad student
26-27 December 2010: Solution outside envelope and flip-flopping: How can forecasters better understand these changes?
Tracks start 12z Sun 26
12 hr increments

Forecasts from 25 Dec 2010
Stony Brook has developed an **ensemble sensitivity analysis** (Torn and Hakim 2008; 2009) tool to enhance forecaster awareness on how upstream uncertainty is effecting a region of interest.

* Ensemble sensitivity is a correlation between a forecast metric at the final forecast time within a boxed region and any variable within the model state vector. It makes use of the different evolution of the forecasts among the ensemble members to derive the sensitivity.

* For CSTAR: Want to use metrics useful to the forecaster: cyclone location and intensity, or why a shift in cyclone forecast between two model runs?

* Test for 26-27 Dec nor-easter and hurricane Irene

* Now running in real-time (Minghua Zheng- CSTAR graduate student)
Initial time 12 Z 23 Dec, 84 hour ECMWF ensemble forecast

12Z23DEC2010 Valid 00Z27DEC2010 MSLP (hpa)
Ensemble mean and variance (shaded)

"Sensitivity" = \frac{\text{cov}(J, x_i)}{\sqrt{\text{var}(x_i)}} = \text{cor}(J, x_i) \times \sqrt{\text{var}(J)}

J is any forecast metric at the final forecast time
- x_i is any variable within the model state vector (500 hPa height in this example).

Here, J is the principal component (PC) of EOF. PCs are the projections of the dominant EOF patterns on each of the ensemble member anomalies.
T-48 hr (25/00Z) Sensitivity

EOF1: Cyclone strength

EOF2: Cyclone position

Positive areas: increasing z at that location is associated with enhancing the corresponding EOF pattern.

Negative areas: decreasing z at that location is associated with enhancing the corresponding EOF pattern.
Can also calculate the ensemble sensitivity for a box of SLP. Why the shift in cyclone position between 24/00Z and 25/00z run cycles?

Using 50-member ECMWF, difference between MSLP ensemble mean forecast at 12z Dec 27 2010. Obtain pattern within red box.

Initial time 2010Dec2500Z (60hr) – 2010Dec2400Z (84hr)

Here, J is the projection of this “shift” pattern onto each ensemble member at final forecast time (Dec27 12Z)
Ensemble sensitivity calculations

Forecast valid time (Dec27 12Z)

Ensemble mean MSLP Forecast difference 25/00z-24/00z
Real-time Sensitivity Calculations

http://dendrite.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html

There is also an optional floater region, in which the user can select the domain, ensemble(s), and forecast day.
Example: GEFS (6d forecast starting at 1/30/12z)

- MSLP MEAN (contour, 2mb) and Spread (shaded, 1mb)
 - 2012013012 + 6day (VT:2012020512)

- EOF1 MSLP pattern
 - Explained variance: 58.1%

- EOF2 MSLP pattern
 - Explained variance: 21.8%

- EOF3 MSLP pattern
 - Explained variance: 7.4%
Ensemble Sensi for EOF1 from init (top left) to day 6

For the blue areas (neg sensi), if you lower the heights, it will result in the EOF1 pattern of a higher pressures (red). Positive sensi (orange) is the opposite.
Goal: Improve forecaster awareness of the important synoptic features impacting the predictability. One approach.....

1. There is a large spread is the forecast cyclone position in the ensembles. OR, two ensemble cluster means have two separate solutions? Forecaster asks: Why are some members closer to the coast and deeper than other members for a particular cyclone (ensemble cluster)?

2. Forecaster defines his/her sensitivity box around the forecast cyclone in question (forecast hour of interest).

3. Using sensitivity analysis, Forecaster can get some idea of the upstream source of the cyclone spread (Pacific Rossby wave packet in medium range?; short-wave from more data sparse Canada?, ...?)

4. If the next model cycle, the storm is closer to the coast, forecaster can confirm whether it was because of changes in upstream flow that sensi analysis suggested.
Ensemble Sensitivity Summary

* Ensemble sensitivity approach has been constructed using metrics useful for the forecaster (e.g., cyclone properties). Can be expanded to other features (300Z jet, snowband position, etc...).

* The ensemble sensitivity is NCEP (thanks to Yan Luo and Yuejan Zhu) in real-time with results on the SBU CSTAR page: http://dendrite.somas.stonybrook.edu/CSTAR/Ensemble_Sensitivity/EnSense_Main.html

* Results from 26-27 Dec 2010 sensitivity analyses suggest that:
 - Cyclone location at Dec 27 12Z sensitive to prior conditions (at -48hr to -60hr) near the gulf coast as well as over northern Canada west of Hudson Bay
 - Short range (24-hr) forecast errors over those locations from forecasts based on Dec 24 00Z apparently led to cyclone being forecast too far east.
QUESTIONS???

http://dendrite.somas.stonybrook.edu/CSTAR/cstar.html

Acknowledgements: NOAA-CSTAR (NA10NWS4680003)