Establishing an Ecological Forecasting System: Predicting Sea Nettles in the Chesapeake Bay

Christopher Brown
NOAA Satellite Climate Studies Branch
CICS - ESSIC
University of Maryland, College Park
Acknowledgments

David Green (NOAA/NWS)
Mary Erickson and Frank Aikman (NOAA/NOS)
Bob Wood and Howard Townsend
(.NOAA/NMFS/CBO OL)
Raleigh Hood and Wen Long (UMCES HPL)
Ragu Murtugudde (UMCP)
Nettle IWT Members (NOAA)
Ecological forecasting*

- Is an emerging requirement for NOAA environmental prediction services;
- Identified as a pivotal issue to be addressed by NOAA to meet emerging ecosystem management challenges;
- Remains primarily in a research mode at NOAA; and,
- No comprehensive, coordinated and systematic approach exists to transition research advancements to stakeholders and beneficiaries.

Ecological Forecasting: Predicting the effects of biological, chemical, physical, and human-induced changes on ecosystems and their components.
Generate daily nowcasts and 3-day forecasts of:

- *Chrysaora quinquecirrha* (Sea Nettles)
- *Karlodinium veneficum*
- *Vibrio cholerae*

Predicted chance of encountering sea nettles, *C. quinquecirrha*, on August 17, 2007

Predicted relative abundance of *Karlodinium veneficum* on August 17, 2007
Project Objective

• Demonstrate the production of a prototype ecological product under the framework of NWS operations.

• Initiate the development of an operational ecological forecasting system at NOAA.

Predicted chance of encountering sea nettle, *C. quinquecirrha*, on August 17, 2007
Forecasting Sea Nettle Distributions in Chesapeake Bay: An Overview

Predicting the distribution of the scyphomedusa *Chrysaora quinquecirrha* in Chesapeake Bay

M. B. Decker\(^1\)*, C. W. Brown\(^2\), R. R. Hood\(^3\), J. E. Purcell\(^4\), T. F. Gross\(^5\), J. C. Matanoski\(^6\), R. O. Bannon\(^7\), E. M. Setzler-Hamilton\(^8,9\)

\(^1\)Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
\(^2\)National Oceanic and Atmospheric Administration, Cooperative Institute of Climate Studies, University of Maryland, College Park, Maryland 20742-2465, USA
\(^3\)Horn Point Laboratory, University of Maryland Center for Environmental Science, PO Box 775, Cambridge, Maryland 21613, USA
\(^4\)Shannon Point Marine Center, 1900 Shannon Point Road, Anacortes, Washington 98221, USA
\(^5\)Chesapeake Bay Research Consortium, 645 Connees Wharf Rd, Edgewater, Maryland 21037, USA
\(^6\)New Mexico State University-Alamogordo, 2400 North Scenic Drive, Alamogordo, New Mexico 88310, USA
\(^7\)University of Rhode Island, Graduate School of Oceanography, Box 200, South Ferry Road, Narragansett, Rhode Island 02882, USA
\(^8\)Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, PO Box 38, Solomons, Maryland 20688, USA
Introduction: Sea Nettles

- *Chrysaora* ephyra and medusa seasonally populate Chesapeake Bay

- *Chrysaora* is biologically important and impacts recreational and commercial activities

- Knowing the distribution of *Chrysaora* would provide valuable information

Life Cycle of *Chrysaora*

Sea Nettle Forecasting Procedure

1. Forecast surface salinity and temperature fields
2. Georeference salinity and SST fields
3. Apply habitat model
4. Generate image illustrating the probable distribution of sea nettles
5. Disseminate to users on WWW
Surface Salinity

- Generated using hydrodynamic model tuned for Chesapeake Bay (ChesROMS)
- Model forced using near-real time and forecast input
- Model attributes:
 - Horizontal Resolution: 1-5 kilometers
 - Vertical Resolution: 1.52 meters
 - Error: 2 - 3 ppt

Model generated surface salinity in Chesapeake Bay for April 20, 2005
Sea-Surface Temperature

Two Sources:

1. Generated by hydrodynamic model
 - *Error*: 2 - 3 °C

2. Derived from NOAA AVHRR satellite imagery
 - *Resolution*: 1 km
 - *Weekly composite*
 - *Bias*: 0.5 °C; *STD*: 1.0°C

Model generated sea-surface temperature in Chesapeake Bay for April 20, 2005
Sea Nettle Habitat Model

- Models developed to predict:
 1. Probability of encountering *Chrysaora*
 2. Density of *Chrysaora*

- Analyzed relationship between *Chrysaora*, salinity and sea-surface temperature

- Samples collected in surface waters (0 –10 m) of Chesapeake Bay (n = 1064)
 - 2/3 model training
 - 1/3 model testing
Nettle medusa occupy narrow temperature (26-31 °C) and salinity (10-16 PSU) range. Salinity optimum = 13.5.
Algorithm for Nowcasting Sea Nettles

- When SST $\leq 34^\circ$C:
 - $p = \frac{e^{\text{logit}}}{(e^{\text{logit}} + 1)}$, where,
 - $\text{logit} = -8.120 + (0.351 \times \text{SST}) - (0.572 \times |\text{SAL} - 13.5|)$
 - Hosmer-Lemeshow Goodness of Fit $P = 0.493$

- When SST $> 34^\circ$C:
 - $p = 0$
Observed medusa occurrence

Probability of medusa occurrence

0.0 0.2 0.4 0.6 0.8 1.0

Present

Absent

Observed medusa occurrence

Probability of medusa occurrence

Absent

Present
observed medusa abundance

Temperature (°C)

Date
May Jun Jul Aug Sep Oct Nov

Salinity

Date
Jun Jul Aug Sep Oct Nov

predicted likelihood

Observed (closed circles)
•
Predicted (open circles)
○

Chesapeake Bay Laboratory

Horn Point Laboratory
Nettle Prediction WWW Sites

Predictions are generated daily and are available on the World Wide Web.

http://coastwatch.noaa.gov/seanettles
Animation of predicted likelihood of encountering the sea nettles (*Chrysaora quinquecirrha*) in Chesapeake Bay from December 29, 2001 – December 31, 2002.
Interannual Variability

Likelihood of Encountering *C. quinquecirrha* in July 1996 and 1999
Transitioning Nettle Forecasts to Operations to NWS

• Vision
 – “Piggy-back” on NOS-supplied Chesapeake Bay Operational Forecast System (CBOFS2) model
 – Disseminate products through NWS

• Follow NWS’ Operations and Service Improvement Process
 – Assembling Integrated Working Team
 – Finalizing Statement of Need
Employ NOAA’s Operational Chesapeake ROMS

CBOFS2 model grid and bathymetry

- Propose to migrate our ecological forecasting models to CBOFS2
- Allows better bathymetric representation
- Improves simulation of physical processes (particularly salinity)
- Provides more accurate forcing for our empirical and mechanistic models
Future Plans
Generate forecasts of:

- Sea Nettles
- Harmful algal blooms (HABs)
- Water-borne pathogens
- Hypoxia / Anoxia
- etc…

Predicted chance of encountering sea nettles, *C. quinquecirrhra*, on August 17, 2007

Predicted relative abundance of *Karlodinium veneficum* on August 17, 2007
Chesapeake Bay Pilot Forecasts*

- Beach/Water Quality
- Living Resource Distribution
- Dissolved Oxygen [DO] Predictions
- Harmful Algal Bloom
- Disease Pathogen Progression (Climate Change)

* Recommendation of regional scientists and information providers: Chesapeake Ecological Forecasting Workshop, Chesapeake Bay Office, Annapolis, Feb 27, 2009
Variables of Interest

- Temperature
- Salinity
- Current velocities
- Nutrient concentrations
- Dissolved oxygen concentration
- Biomass and productivity estimates and taxonomic information of organisms of various trophic levels
Biogeochemical Forecasting

- Couple biogeochemical / ecosystem model

- Generate biogeochemical / ecological forecasts
 - Chlorophyll concentration
 - Nutrient concentrations
 - Dissolved Oxygen
 - Zooplankton

Biogeochemical/ecological model
Regional Earth System Modeling

- **Objective:** Develop a fully integrated, bio-physical model of Chesapeake Bay and its watershed that assimilates *in-situ* and satellite-derived data.

- **Purpose:**
 - Near-Real Time Applications: Nowcasting and forecasting of marine organisms, ocean health, and coastal conditions
 - Climate Research: Estimating effect of climate change on the health of coastal marine ecosystems

SeaWiFS True-Color Image of Mid-Atlantic Region from April 12, 1998.

Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE
Chesapeake Bay Forecast System

- **Objective**
 - Develop a fully integrated, ecosystem model of the Chesapeake Bay and its watershed that assimilates *in-situ* and satellite-derived data by adapting and coupling existing models
 - Consists of a coupled air / land / coastal ocean modeling system

- **System Components**
 - **Air**: Atmosphere - Weather Research and Forecasting (WRF) Model
 - **Land**: Land - Soil and Water Assessment Tool (SWAT)
 - **Coastal Ocean**: Regional Ocean Modeling System (ROMS)

- **Partners**: UM System, NASA, NOAA
Expected Project Benefits

• Develop a framework and process for transitioning ecological forecasts to operations;

• Advance the proof-of-concept for a NOAA Ecological Forecasting System that is scalable and extensible; and

• Serve as test case for an integrated environmental service (IES) at NOAA.
Thank You!
Backup Slides
Ecological Prediction in Chesapeake Bay: Current Capabilities

- Generate daily nowcasts and 3-day forecasts of:
 - Sea Nettles
 - Karlodinium veneficum
 - Vibrio cholerae

- Forecasts created by identifying the locations where ambient conditions coincide with the preferred environment (= habitat) of the organism

- Forecasts of environmental conditions required

Predicted chance of encountering sea nettles, *C. quinquecirrha*, on August 17, 2007

Predicted relative abundance of *Karlodinium veneficum* on August 17, 2007
Using real-time and forecast data acquired and derived from a variety of sources and techniques to drive multi-variate empirical habitat models that predict the probability of the target species.
Issues With Empirical Approach

• Empirical models are specific for each location and population

• Development of empirical models require sufficient number of samples

• Species acclimate to environment, i.e. habitat model may change
Chesapeake Bay Regional Ocean Modeling System (ChesROMS)

- Solar Radiation
- Precipitation
- River Flow and Load
- Heat Flux
- Wind
- Atmospheric Deposition and Ventilation
- Currents
- Temperature and Salinity
- Tidal Harmonics

Conditions at Bay’s Mouth
- Near-real time water level
- Climatological vertical profiles of temperature, salinity, and NO₃, PO₄, O₂ concentrations
Taylor diagram of normalized standard deviations, correlations and RMSE of temperature (blue square), salinity (red star), water level (green diamond) for 1991-2005. Each points in one variable group corresponding to one year results.
Scientific Motivation for Study

• Detect and predict distribution pattern of organisms that affect society, both beneficial and harmful

• Few existing methods work well and in near-real time

Ecological Forecasting

Predicting the effects of biological, chemical, physical, and human-induced changes on ecosystems and their components

Data Assimilation
Downscaling
ROMS

Regional Earth System Modeling
Coupling models and linking products

Probabilistic forecasting
Building a “seamless suite” of model-based products and services over a backbone of existing infrastructure
Chesapeake Bay Prototype

Demonstrate:

• Regional collaboration (R2O)
• Dissemination of
 • Calendar-driven products
 • Near-real time applications
 • Climate projections
 • On-demand products/decision support tools
Biogeochemical and Ecological Forecasting

Prognostic State Variables:

- chlorophyll
- Nitrate
- Ammonium
- DON
- Oxygen
- Detritus
- Zooplankton

Biogeochemical/ecological forecasts

Additional forcing variables for empirical habitat models

ChesROMS modeled oxygen
The Need for High Performance Computing

- Our model development efforts (spin up, test and validation runs) are currently constrained by our computational resources.

- Spin up, test and validation runs using CBOFS2 will require much higher performance computing capabilities.

- Computational demand of running CBOFS2 operationally with a coupled biogeochemical/ecological forecasting model may also require HPC.

Microway 12 node (24 processor) cluster at Horn Point Laboratory currently used for ChesROMS spin up, test and validation runs.
What do we need for a fisheries ecological forecasts in the Chesapeake?

- Operational backbone modeling suite to create forecasts of environmental variables
- Research and monitoring to provide data for developing and validating forecast models (statistical and process models to overlay on environmental variable forecast)
- Forecast office that works with regional management agencies and structure (e.g., Chesapeake Bay Program) to ensure utility of and support for forecast