The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS)

Kiel Ortega and Travis Smith
U. of Oklahoma/CIMMS
&
NOAA/OAR/NSSL
Important People

Sam Degelia
Rachel Gaal
Paul Goree
Wolfgang Hanft
Corey Howard
Ken Howard
Dave King
Carrie Langston

Garrett Layne
Brian Nelson
Brittany Newman
Youcun Qi
Scott Stevens
Jennifer Tate
Skylar Williams
Jian Zhang
Why MYRORSS?

Provide a consistent radar data set across the CONUS

Support research in the development of probabilistic information for warnings

Support implementation of MRMS to operations
Multi-Radar Multi-Sensor System

MRMS

MRMS Merged Reflectivity QC 02:00 [2012/07/18 20:02:00 UTC]

MRMS Maximum Hail Size

MRMS MESH 01:00 [2012/07/18 20:02:00 UTC]

KBOX KOKX

MRMS Maximum Hail Size

+ other neighboring radars

vLAB Forum: MYRORSS
MYRORSS Domain

5-minute, 0.01x0.01 degree resolution, 35 vertical levels
of Volumes Collected by WSR-88Ds By VCP

Σ ~ 105 million volume scans
MYRORSS Processing

Data Store

Server #1 → Server #2 → Server #3

Raw radar data and processed model grids

Processed single radar data

Merged data

Further post-processing and science

Data Store

Server #1 → Server #2 → Server #3 → Server #4
MYRORSS post processing

Merged 3D reflectivity

Severe Wx Products

Aviation Products

Hydro Products
1. Conversion into netCDF

2. Radar QC
 a) QCNN – Lakshmanan et al. 2007 & 2010
 b) Further bloom QC for biological scatterers—Tang et al. 2011

3. Dealiasing
 a) 2D dealiasing—Jing & Weiner 1993

4. Azimuthal Shear Calculations
 a) LLSD—Smith and Elmore 2004
 b) Range correction—Newman et al. 2013
 c) Composite layers (0-3 km AGL and 3-6 km AGL)
MYRORSS QC
Erroneous MESH detections—large areas and large values—due to radar ducting and coastline interactions. The most common QC problem.
Using the Data: Radar-based Climatologies

Individual timesteps are cleaned up using a threshold, minimum size of clusters and temporally using a multiple-hypothesis tracking method. MHT accumulations are then run through a series of smoothers to further clean up the field and make the size of the fields appropriate for climatology generation.
Using the Data: Radar-based Climatologies

Yearly Accumulation (MHT)—2000

Yearly Accumulation (MHT & Smoothed)—2000
Future Fixes

Make timing of products smooth (right now ~5 minutes, need exactly 5 minutes)

Fix LLSD corrected shear calculations

Produce un-QC’d composite

Identify and correct reflectivity issues affecting QPE estimates
What’s Next?
Forecasting a Continuum of Environmental Threats

Follows the flow of “The Warning Process”
Multi-scale storm “cluster” identification
Multi-scale storm "cluster" identification

200 km2
Multi-scale storm “cluster” identification

2000 km²
Multi-scale storm “cluster” identification
Storm classification inputs from **MYRORSS / MRMS**

<table>
<thead>
<tr>
<th>Storm Attribute</th>
<th>Max 30 Minute MESH</th>
</tr>
</thead>
<tbody>
<tr>
<td>-20 C Merged Reflectivity</td>
<td>Most Unstable CAPE</td>
</tr>
<tr>
<td>0 C Merged Reflectivity</td>
<td>Most Unstable LCL Height</td>
</tr>
<tr>
<td>Aspect Ratio</td>
<td>Probability of Severe Hail (POSH)</td>
</tr>
<tr>
<td>0-2 km Merged Azimuthal Shear</td>
<td>Quality Controled Merged Reflectivity Composite</td>
</tr>
<tr>
<td>3-6 km Merged Azimuthal Shear</td>
<td>Severe Hail Index (SHI)</td>
</tr>
<tr>
<td>0-6 km Shear Magnitude</td>
<td>Storm Size</td>
</tr>
<tr>
<td>0-1 km Storm Relative Helicity</td>
<td>Surface CAPE</td>
</tr>
<tr>
<td>0-3 km Storm Relative Helicity</td>
<td>Surface Dewpoint</td>
</tr>
<tr>
<td>Longevity</td>
<td>Surface Temperature</td>
</tr>
<tr>
<td>Maximum Expected Size of Hail (MESH)</td>
<td>Vertically Integrated Liquid (VIL)</td>
</tr>
</tbody>
</table>
Storm classification

Disorganized
- Discrete
 - In Cluster
 - In Line

QLCS
- Bow Echo

Supercell Right Mover
- Discrete
 - In Cluster
 - In Line

Supercell Left Mover
- Discrete
 - In Cluster
 - In Line

Based on:
Storm classification: Example Decision Tree
Generate probability (P) of:

\[\text{[tornado/wind/hail/heavy precip/lightning/mesocyclone/etc.]}\]

For each storm cluster.

- \(P(\text{event is ongoing})\)
- \(P(\text{event will occur in X minutes})\)

Probabilistic 0-60 minute Nowcast
Informed Probabilistic Hazard Information (PHI)
• Blending with 0-2 hour storm-scale ensembles

• Validation of storm mode in convection-allow models

• Baseline for evaluation of Warn-on-Forecast: beating climatology
High resolution verification & Synthetic verification

e.g. Severe Hazards Analysis and Verification Experiment; mPING; radar proxies for severe wx...

Days of operation: 554
Total data points: 63353
Hail data points: 45406
Wind data points: 6456
Flood data points: 9313
Winter data points: 2178
Questionable time: 33371
'No wind' reports: 4117
'No flood' reports: 6821
'No hail' reports: 20226
Non-svr hail reports: 15196
Svr hail reports: 8848
Sig hail reports: 1021
Measured hail reports: 380
Measure avg reports: 89
Relational database: storm type / severity by environment

Supplement to Smith et al. 2012, including weak severe, non-severe, and synthetic verification measures.
Quantitative Precipitation Estimation

Key MRMS *QPE* Products

- Surface Precip Type
- Surface Precip Rate
- Radar QPE (1, 6, 24, 48, 72h, 10day acc)
- Gauge QPE
- Local gauge bias corrected radar QPE
- Gauge + orographic pcp climatology QPE
- Radar QPE Quality Index (RQI)
- Gauge Influence Index (GII)

The radar QPE quality is better in warm season than in cool season, and is better in the east than in the west.
Other Opportunities & Plans

- Fix issues, re-run! (and again, and again…)
- Near real time addition of new data
- Web front end for data mining / case studies by collaborators
- Aviation
- Insurance / Reinsurance
- Climate
- Agriculture
- And more!
MYRORSS processing is ongoing
Many QC issues identified
Next: post processing
QPE radar retrospective is another talk
Many science opportunities at many time/space scales

Kiel.Ortega@noaa.gov; Travis.Smith@noaa.gov